High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells.
نویسندگان
چکیده
Loss of the modulatory role of the endothelium may be a critical initial factor in the development of diabetic vascular diseases. Exposure of human aortic endothelial cells (HAECs) to high glucose (30 or 44 mmol/l) for 7-10 days significantly increased the release of superoxide anion in response to the calcium ionophore A23187. Nitrate, a breakdown product of peroxynitrite (ONOO(-)), was substantially increased in parallel with a decline in cyclic guanosine monophosphate (GMP). Using immunochemical techniques and high-performance liquid chromatography, an increase in tyrosine nitration of prostacyclin (PGI(2)) synthase (PGIS) associated with a decrease in its activity was found in cells exposed to high glucose. Both the increase in tyrosine nitration and the decrease in PGIS activity were lessened by decreasing either nitric oxide or superoxide anion, suggesting that ONOO(-) was responsible. Furthermore, SQ29548, a thromboxane/prostaglandin (PG) H(2) (TP) receptor antagonist, significantly reduced the increased endothelial cell apoptosis and the expression of soluble intercellular adhesion molecule-1 that occurred in cells exposed to high glucose, without affecting the decrease in PGIS activity. Thus, exposure of HAECs to high glucose increases formation of ONOO(-), which causes tyrosine nitration and inhibition of PGIS. The shunting of arachidonic acid to the PGI(2) precursor PGH(2) or other eicosanoids likely results in TP receptor stimulation. These observations can explain several abnormalities in diabetes, including 1) increased free radicals, 2) decreased bioactivity of NO, 3) PGI(2) deficiency, and 4) increased vasoconstriction, endothelial apoptosis, and inflammation via TP receptor stimulation.
منابع مشابه
Hypoxia–Reoxygenation Triggers Coronary Vasospasm in Isolated Bovine Coronary Arteries via Tyrosine Nitration of Prostacyclin Synthase
The role of peroxynitrite in hypoxia-reoxygenation-induced coronary vasospasm was investigated in isolated bovine coronary arteries. Hypoxia-reoxygenation selectively blunted prostacyclin (PGI2)-dependent vasorelaxation and elicited a sustained vasoconstriction that was blocked by a cyclooxygenase inhibitor, indomethacin, and SQ29548, a thromboxane (Tx)A2/prostaglandin H2 receptor antagonist, b...
متن کاملHigh glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species.
BACKGROUND Prostaglandins generated by cyclooxygenase (COX) have been implicated in hyperglycemia-induced endothelial dysfunction. However, the role of individual COX isoenzymes as well as the molecular mechanisms linking oxidative stress and endothelial dysfunction in diabetes remains to be clarified. METHODS AND RESULTS Human aortic endothelial cells were exposed to normal (5.5 mmol/L) and ...
متن کاملEffect of high glucose on vasculature.
To the Editor: Cosentino et al1 report that high glucose causes PKCdependent upregulation of inducible cyclooxygenase and endothelial NO synthase (eNOS) expression in human aortic endothelial cells associated with a selective increase of thromboxane production and reduced NO release. As stated by the authors, these data are in contrast with recent observations that eNOS activity was reduced to ...
متن کاملThe effect of microRNA-125 on the adhesion molecule expression of integrin beta2 and adhesive determination of endothelial cells isolated from human aorta to monocyte
Background: The immune-mediated responses in vascular cells may include the increased expression of endothelial adhesion molecules, leukocyte rolling and infiltration, cellular lipid dysregulation and vascular smooth muscle cells (VSMCs) differentiation. Investigating the cellular and molecular events involved in the rolling process is useful for treatment or prevention of the vessel stenosis es...
متن کاملOxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration.
In diabetic retinopathy, endothelial cell apoptosis is paradoxically increased despite upregulation of the potent pro-survival factor VEGF. We tested the hypothesis that elevated glucose levels disrupt VEGF's pro-survival function via peroxynitrite-mediated alteration of the Akt-1/p38 MAP kinase signaling pathway by studies of retinal endothelial cells in vitro. High glucose or exogenous peroxy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 51 1 شماره
صفحات -
تاریخ انتشار 2002